EVAL-AD5222SDZ User Guide
 UG-349

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Evaluation Board for the AD5222 Digital Potentiometer

FEATURES

Full featured evaluation board for the AD5222
Various test circuits
Various ac and dc input signals
PC control via a separately purchased system demonstration platform (SDP-B)
PC software for control

PACKAGE CONTENTS

EVAL-AD5222SDZ board

CD that includes

Self-installing software that allows users to control the board and exercise all functions of the device
Electronic version of the AD5222 data sheet
Electronic version of the UG-349 user guide

GENERAL DESCRIPTION

This user guide describes the evaluation board for evaluating the AD5222-a dual-channel, 128-position, digital potentiometer

The AD5222 supports single-supply 2.7 V to 5.5 V operation, making the device suited for battery-powered applications and many other applications while offering a 0.2% channel-tochannel matching tolerance.
In addition, the AD5222 uses a high speed up/down interface, allowing speeds of up to 15 MHz .

The EVAL-AD5222SDZ can operate in single-supply mode and incorporates an internal power supply from the USB.
Complete specifications for the AD5222 part can be found in the AD5222 data sheet, which is available from Analog Devices, Inc., and should be consulted in conjunction with this user guide when using the evaluation board.

DIGITAL PICTURE OF EVALUATION BOARD WITH SYSTEM DEMONSTRATION PLATFORM
SYSTEM DEMONSTRATION
PLATFORM

Figure 1.

TABLE OF CONTENTS

Features .. 1
Package Contents... 1
General Description ... 1
Digital Picture of Evaluation Board with System
Demonstration Platform...
Demonstration Platform.. 1

Revision History .. 2
Evaluation Board Hardware .. 3
Power Supplies .. 3
Link Options .. 3
Test Circuits 4
Evaluation Board Software 6
Installing the Software 6
Running the Software 6
Software Operation 6
Evaluation Board Schematics and Artwork 7
Ordering Information 13
Bill of Materials. 13
Related Links 14

REVISION HISTORY

12/11—Revision 0: Initial Version

EVALUATION BOARD HARDWARE

POWER SUPPLIES

The EVAL-AD5222SDZ supports using single power supplies.
The evaluation board can be powered either from the SDP port or externally by the J1-1 and J1-2 connectors, as described in Table 1.

All supplies are decoupled to ground using $10 \mu \mathrm{~F}$ tantalum and $0.1 \mu \mathrm{~F}$ ceramic capacitors.

Table 1. Maximum and Minimum Voltages of the Connectors

Connector No.	Label	Voltage
J1-1	EXT VDD	Analog positive power supply, V_{DD}. For single-supply operation, it is 2.7 V to 5 V.
$\mathrm{J1-2}$	GND	Analog ground.

LINK OPTIONS

Several link and switch options are incorporated in the evaluation board and should be set up before using the board. Table 2 describes the positions of the links to control the evaluation board by a PC, via the SDP-B board, using the EVAL-AD5222SDZ in single-supply mode. The functions of these link options are described in detail in Table 3 through Table 6.

Table 2. Link Options Setup for SDP-B Control (Default)

Link No.	Option
A25	3.3 V
A24	GND

Table 3. Link Functions

Link No.	Power Supply	Options
A25	$V_{D D}$	This link selects one of the following as the positive power supply:
		5 V (from SDP-B).
		3.3 V (from SDP-B).
		EXT (external supply from the J1-1 connector).
A24	$V_{S S}$	This link should be connected to GND (analog ground).

TEST CIRCUITS

The EVAL-AD5222SDZ incorporates several test circuits to evaluate the AD5222 performance.

DAC

RDAC1 can be operated as a digital-to-analog converter (DAC), as shown in Figure 2.

Figure 2. DAC
Table 4 shows the options available for the voltage references.
Table 4. DAC Voltage References

Terminal	Link	Options	Description
A1	A20	AC + DC	Connects Terminal A1 to $\left(V_{D D}-V_{S S}\right) / 2$ Connects Terminal A1 to $V_{D D}$
W1	BUF_W1	VDD	Connects Terminal W1 to an output buffer
B1	A21	DC	Connects Terminal B1 to $\left(V_{D D}-V_{S S} / 2\right.$
Connects Terminal B1 to analog ground			

The output voltage is defined in Equation 1.

$$
\begin{equation*}
V_{\text {OUT }}=\left(V_{A I}-V_{B I}\right) \times \frac{R_{\text {WBI }}}{128} \tag{1}
\end{equation*}
$$

where:
$R_{W B I}$ is the resistor between the W 1 and B 1 terminals.
$V_{A l}$ is the voltage applied to the A1 terminal (A20 link).
$V_{B I}$ is the voltage applied to the B1 terminal (A21 link).
However, by using the R34 and R35 external resistors, the user can reduce the voltage of the voltage references. In this case, use the A 1 and B 1 test points to measure the voltage applied to the A 1 and B 1 terminals and recalculate $\mathrm{V}_{\mathrm{A} 1}$ and V_{BI} in Equation 1.

AC Signal Attenuation

RDAC1 can be used to attenuate an ac signal, which must be provided externally using the AC_INPUT connector, as shown in Figure 3.

Figure 3. AC Signal Attenuator
Depending on the voltage supply rails and the dc offset voltage of the ac signal, various configurations can be used as described in Table 5.

Table 5. AC Signal Attenuation Link Options

\begin{tabular}{|c|c|c|}
\hline Link \& Options \& Conditions

\hline A20 \& AC + DC

AC \& | No dc offset voltage. |
| :--- |
| AC signal is outside the voltage supply rails due to the dc offset voltage. |
| DC offset voltage $\neq \mathrm{V}_{\mathrm{DD}} / 2$. 1 |
| All other conditions. |

\hline A21 \& $$
\mathrm{DC}
$$

GND \& Use in conjunction with ac + dc link. All other conditions.

\hline \multicolumn{3}{|l|}{| ${ }^{1}$ Recommended to ensure optimal total harmonic distortion (THD) performance. |
| :--- |
| The signal attenuation is defined in Equation 2. |}

\hline \multicolumn{3}{|r|}{$$
\begin{equation*}
\text { Attenuation }(\mathrm{dB})=20 \times \log \left(\frac{R_{\text {WBI }}+R_{W}}{R_{\text {END-TO-END }}}\right) \tag{2}
\end{equation*}
$$}

\hline
\end{tabular}

where:
$R_{\text {WBI }}$ is the resistor between the W 1 and B 1 terminals.
R_{W} is the wiper resistance.
$R_{\text {END-TO-END }}$ is the end-to-end resistance value.
In addition, R36 can be used to achieve a pseudologarithmic attenuation. To do so, adjust the R36 resistor until a desirable transfer function is found.

Signal Amplifier

RDAC2 can be operated as an inverting or noninverting signal amplifier supporting linear or pseudologarithmic gains. Table 6 shows the available configurations.
The noninverting amplifier with linear gain is shown in Figure 4, and the gain is defined in Equation 3.

$$
\begin{equation*}
G=1+\frac{R_{W B 2}}{R 38} \tag{3}
\end{equation*}
$$

where $R_{\text {WB2 }}$ is the resistor between the W2 and B2 terminals.

> Figure 4. Linear Noninverting Amplifier

The noninverting amplifier with pseudologarithmic gain is shown in Figure 5, and the gain is defined in Equation 4.

$$
\begin{equation*}
G=1+\frac{R_{W B 2}}{R_{A W 2}} \tag{4}
\end{equation*}
$$

where:
$R_{\text {WB2 } 2}$ is the resistor between the W 2 and B 2 terminals. $R_{A W 2}$ is the resistor between the A2 and W2 terminals.

Figure 5. Pseudologarithmic Noninverting Amplifier
R43 and R42 can be used to set the maximum and minimum gain limits.
The inverting amplifier with linear gain is shown in Figure 6, and the gain is defined in Equation 5.
Note that the input signal, V_{IN}, must be negative.

$$
\begin{equation*}
G=-\frac{R_{W B 2}}{R 38} \tag{5}
\end{equation*}
$$

where $R_{\text {WB2 }}$ is the resistor between the W 2 and B 2 terminals.

Figure 6. Linear Inverting Amplifier

Table 6. Amplifier Selection Link Options

Amplifier	Gain	Link	Label ${ }^{1}$	$\mathrm{V}_{\text {IN }}$ Range
Noninverting	Linear	A27	LINEAR	0 V to V_{DD}
		A29	NON-INVERTING	
		A30	NON-INVERTING	
	Pseudologarithmic	A27	PSEUDOLOG	0 V to V_{DD}
		A29	NON-INVERTING	
		A30	NON-INVERTING	
Inverting	Linear	A27	LINEAR	- V_{DD} to 0V
		A29	INVERTING	
		A30	INVERTING	

[^0]
EVALUATION BOARD SOFTWARE

INSTALLING THE SOFTWARE

The EVAL-AD5222SDZ evaluation kit includes evaluation board software provided on a CD. The software is compatible with Windows ${ }^{\circ}$ XP, Windows Vista, and Windows 7 (both 32-bit and 64-bit).

Install the software before connecting the SDP-B board to the USB port of the PC to ensure that the SDP-B board is recognized when it is connected to the PC.

1. Start the Windows operating system and insert the CD.
2. The installation software opens automatically. If it does not, run the setup.exe file from the CD.
3. After installation is completed, power up the evaluation board as described in the Power Supplies section.
4. Connect the EVAL-AD5222SDZ to the SDP-B board and the SDP-B board to the PC using the USB cable included in the evaluation kit.
5. When the software detects the evaluation board, follow the instructions that appear to finalize the installation.

To uninstall the program, click Start $>$ Control Panel $>$ Add or Remove Programs > AD5222 Eval Board.

RUNNING THE SOFTWARE

To run the program, do the following:

1. Click Start $>$ All Programs $>$ Analog Devices $>$ AD5222 $>$ AD5222 Eval Board.
2. If the SDP-B board is not connected to the USB port when the software is launched, a connectivity error displays (see Figure 7). Simply connect the evaluation board to the USB port of the PC, wait a few seconds, click Rescan, and follow the instructions.

Figure 7. Pop-Up Window Error
The main window of the EVAL-AD5222SDZ software then opens, as shown in Figure 8.

SOFTWARE OPERATION

The main window of the EVAL-AD5222SDZ software is divided into the following sections: RDAC1 and RDAC2. The features of the main window are as follows:

- RDAC1 and RDAC2 can be used to update the RDAC registers by typing the desired number of steps and clicking UP or DOWN.
- INDEPENDENT MODE ENABLE allows you to update each RDAC register independently.
- Clicking EXIT closes the program but does not reset the part.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 9. Schematic of Multiboard Digital Potentiometers

Figure 10. Schematic of Multiboard RDACO Circuits

INVERTING AND NON-INVERTING WITH LINEAR AND PSEUDO-LOG GAIN

Figure 12. Schematic of AD5222 Power Supplies and Other Channels

Figure 13. Schematic of SDP-B Connector

Figure 14. Component Side View

Figure 15. Component Placement Drawing

Figure 16. Layer 2 Side PCB Drawing

Figure 17. Layer 3 Side PCB Drawing

Figure 18. Solder Side PCB Drawing

ORDERING INFORMATION

BILL OF MATERIALS

Table 7.

Qty	Reference Designator	Description	Supplier ${ }^{1 / P a r t ~ N u m b e r ~}$			
1	C1	10 nF capacitor, 0805	FEC 1692285			
4	C2, C4, C25, C26	$0.1 \mu \mathrm{~F}$ capacitor, 0603	FEC 138-2224			
1	C3	$1 \mu \mathrm{~F}$ capacitor, 0402	FEC 1288253			
2	C24, C27	$10 \mu \mathrm{~F}$ capacitor, 1206	FEC 1611967			
1	D6	LED, green	FEC 579-0852			
1	J1	3-pin connector	FEC 151790			
1	J2	2-pin connector	FEC 151789			
1	J22	Receptacle, $0.6 \mathrm{~mm}, 120$-way	Digi-Key H1219-ND			
4	A20, A21, A24, A25	Header 2-row, $36+36$ way and jumper socket, black	FEC 148-535 and FEC 150-410			
3	A27, A29, A30	Header 1-row, 3-way and jumper socket, black	FEC 102-2248 and FEC 150-410			
4	BUF-W1, OAVOUT, BUF-3, BUF-4	Header 1-row, 2-way and jumper socket, black	FEC 102-2247 and FEC 150-410			
1	R41	1.78 k Ω resistor, 0603, 1\%	FEC 1170811			
2	R1, R2	$2.2 \mathrm{k} \Omega$ resistor, 0603, 1\%	FEC 933-0810			
5	R3, R4, R38, R39, R40	$2.7 \mathrm{k} \Omega$ resistor, 1206, 1\%	FEC 9337288			
40	AD5162-1, AD5162-2, AD5222-1, AD5222-2, AD5204-1, AD5204-2, AD5204-3, AD5204-4, AD5222-1, AD5222-2, AD5232-1, AD5232-2, AD5233-1, AD5233-2, AD5233-3, AD5233-4, AD5235-1, AD5235-2, AD5243-1, AD5243-2, AD5252-1, AD5252-2, AD5222-1, AD5222-2, AD5222-3, AD5222-4, AD5222-1, AD5222-2, AD5222-3, AD5222-4, ADN2850-1, ADN2850-2, R34, R35, R42, R43	0Ω resistor, 0603	FEC 9331662			
1	R37	$1 \mathrm{k} \Omega$ resistor, 0603, 1\%	FEC 933-0380			
6	$3.3 \mathrm{~V}, 5 \mathrm{~V}$, DGND, AGND, VDD, VSS	Test point, PCB, black, PK100	FEC 873-1128			
34	A1, A2, A3, A4, RDY\|MODE, RESET_BF, SCL_BF, SCLK_BF, SDA_BF, SDO_BF, SHDN_BF, SYNC_BF, MUX-AO	CS, MUXA1	DACSEL MUX-A2	U/D, O1, O2, DIN_BF, CLK, B1, B2, B3, B4, V1, V2, VOUT, VOUT2, VOUT3, VOUT4, W1,W1_BUF, W2, W3, W4, WP_BUF	Test point, PCB, red, PK100	FEC 873-1144
1	U1	256-position, dual-channel, $I^{2} \mathrm{C}$-compatible digital potentiometer	Analog Devices AD5243			
1	U2	256-position, dual-channel, SPI digital potentiometer	Analog Devices AD5162			
1	U3	256-position, one-time programmable, dualchannel, $I^{2} \mathrm{C}$ digital potentiometer	Analog Devices AD5172			
1	U4	Nonvolatile, quad, 64-position digital potentiometer	Analog Devices AD5233			
1	U5	Dual, increment/decrement digital potentiometer	Analog Devices AD5222			
1	U6	4-channel digital potentiometer	Analog Devices AD8403			
1	U7	Quad, 256-position, $I^{2} C$, nonvolatile memory digital potentiometer	Analog Devices AD5254			
1	U8	4-channel digital potentiometer	Analog Devices AD5204			
1	U9	$1^{2} \mathrm{C}$, nonvolatile memory, dual, 256-position digital potentiometer	Analog Devices AD5252			
1	U10	Nonvolatile memory, dual, 256-position digital potentiometer	Analog Devices AD5232			
1	U11	Dual, 1024-position digital potentiometer with nonvolatile memory and SPI interface	Analog Devices AD5235			

Qty	Reference Designator	Description	Supplier ${ }^{1 / P a r t ~ N u m b e r ~}$
1	U12	Dual, 1024-position digital rheostat with nonvolatile memory and SPI interface	Analog Devices ADN2850
1	U13	$2.5 \mathrm{~V} / 3.3 \mathrm{~V}$, 16-bit (dual 8-bit), two-port level translator bus switch	Analog Devices ADG3247
1	U14	Precision, 20 MHz , CMOS, quad, rail-to-rail operational amplifier	Analog Devices AD8618
1	U15	50 MHz , precision, low distortion, low noise CMOS amplifier	Analog Devices AD8652
1	U25	24LC64 EEPROM	FEC 975-8070
1	A22	$3 \mathrm{~V} / 5 \mathrm{~V}, \pm 5 \mathrm{~V}$ CMOS, 8-channel analog multiplexer	Analog Devices ADG658

${ }^{1}$ FEC refers to Farnell Electronic Component Distributors; Digi-Key refers to Digi-Key Corporation.

RELATED LINKS

Resource	Description
AD5243	Product Page, 256-Position Dual-Channel I ${ }^{2}$ C Compatible Digital Potentiometer
AD5162	Product Page, 256-Position Dual-Channel SPI Digital Potentiometer
AD5233	Product Page, Nonvolatile, Quad, 64-Position Digital Potentiometer
AD5222	Product Page, Dual, Increment/Decrement Digital Potentiometer
AD8403	Product Page, 4-Channel Digital Potentiometer
AD5254	Product Page, Quad 256-Position I ${ }^{2}$ C Nonvolatile Memory, Digital Potentiometer
AD5204	Product Page, 4-Channel Digital Potentiometer
AD5252	Product Page, I ${ }^{2}$ C, Nonvolatile Memory, Dual 256-Position Digital Potentiometer
AD5232	Product Page, Nonvolatile Memory, Dual, 256-Position Digital Potentiometer
AD5235	Product Page, Nonvolatile Memory, Dual 1024-Position Digital Potentiometer
ADN2850	Product Page, Nonvolatile Memory, Dual 1024-Position Digital Resistor
ADG3247	Product Page, 2.5 V/3.3 V, 16-Bit (Dual 8-Bit), 2-Port Level Translator, Bus Switch
ADG658	Product Page, $3 \mathrm{~V} / 5 \mathrm{~V} \pm 5 \mathrm{~V}$ CMOS 8-Channel Analog Multiplexer
AD8652	Product Page, 50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifier
AD8618	Product Page, Precision 20 MHz CMOS Quad Rail-to-Rail Operational Amplifier

> EVAL-AD5222SDZ User Guide UG-349

NOTES

NOTES

$1^{2} \mathrm{C}$ refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

 submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.
w w w. analog.com

[^0]: ${ }^{1}$ See Figure 14.

